Below you can find the full step by step solution for you problem. We hope it will be very helpful for you and it will help you to understand the solving process.
((5*x)^ln(5*x))'The calculation above is a derivative of the function f (x)
(5*x)^ln(5*x)*((ln(5*x))'*ln(5*x)+(ln(5*x)*(5*x)')/(5*x))
(5*x)^ln(5*x)*((ln(5*x))'*ln(5*x)+(ln(5*x)*((5)'*x+5*(x)'))/(5*x))
(5*x)^ln(5*x)*((ln(5*x))'*ln(5*x)+(ln(5*x)*(0*x+5*(x)'))/(5*x))
(5*x)^ln(5*x)*((ln(5*x))'*ln(5*x)+(ln(5*x)*(0*x+5*1))/(5*x))
(5*x)^ln(5*x)*((ln(5*x))'*ln(5*x)+(ln(5*x)*5)/(5*x))
(5*x)^ln(5*x)*((1/(5*x))*(5*x)'*ln(5*x)+(ln(5*x)*5)/(5*x))
(5*x)^ln(5*x)*((1/(5*x))*((5)'*x+5*(x)')*ln(5*x)+(ln(5*x)*5)/(5*x))
(5*x)^ln(5*x)*((1/(5*x))*(0*x+5*(x)')*ln(5*x)+(ln(5*x)*5)/(5*x))
(5*x)^ln(5*x)*((1/(5*x))*(0*x+5*1)*ln(5*x)+(ln(5*x)*5)/(5*x))
(5*x)^ln(5*x)*(x^-1*ln(5*x)+(ln(5*x)*5)/(5*x))
(5*x)^((1/(5*x))*(5*x)')
(5*x)^((1/(5*x))*((5)'*x+5*(x)'))
(5*x)^((1/(5*x))*(0*x+5*(x)'))
(5*x)^((1/(5*x))*(0*x+5*1))
((5)'*x+5*(x)')^ln(5*x)
(0*x+5*(x)')^ln(5*x)
(0*x+5*1)^ln(5*x)
2*5^ln(5*x)*ln(5*x)*x^(ln(5*x)-1)
| Derivative of (3x-2)(3x-2)(3x-2) | | Derivative of -k/(x^2) | | Derivative of 30*e^-4t | | Derivative of 450e^0.09t | | Derivative of (e^x)*(x^e) | | Derivative of 95e^(-0.491t) | | Derivative of t^9*e^t | | Derivative of (9ln(10x)) | | Derivative of x^1/3(x^2-63) | | Derivative of u^9*e^-u | | Derivative of -pi/2 | | Derivative of (u^9)(e^-u) | | Derivative of 7e^x-x^5 | | Derivative of -12sin(4x) | | Derivative of 3tan(2x)^5 | | Derivative of 4x*e^3x | | Derivative of 4*x*e^3x | | Derivative of (2x^2-8)^3 | | Derivative of (X^3-cos(x))^5 | | Derivative of x^2e^8x | | Derivative of 22x-(x^2/28) | | Derivative of ln(3x^(-1/2)) | | Derivative of ln(x)/x^5 | | Derivative of -x^2/64 | | Derivative of 75(x^1/2-10) | | Derivative of 75(x-10) | | Derivative of cos(e^2sin(x)) | | Derivative of 7e^(x-4) | | Derivative of 7e^x-4 | | Derivative of 300*3^x | | Derivative of 21x^2-7e^x | | Derivative of e^x/2x^2 |